High-tech plastics for lightweight solutions

Dr. Martin Wanders
LANXESS

LANXESS Tech Series, 24th of May 2012
Motivation
Weight reduction in automotive

- Resources are limited
- CO$_2$-emission is harmful for environment
- CO$_2$-emissions have to be reduced
- Influencing factors:
 - rolling friction/resistance
 - aerodynamic resistance
 - weight
 - …

Plastics are light - Plastics save the environment!

http://www.klimaherbst.de/und-ewig-druckt-der-raumwiderstand/
Global product and application development (GPAD) to drive innovation

- Tailored development activities and services
- Globally positioned and networked
- Head count (2012): 125
- Departments
 - Product development
 - R&D testing center
 - Application development
 - Customer engineering services

SCP product and application development center
Innovation programs with focus on megatrends

- **Urbanization**
- **Mobility**
- **Lightweight structures**
- **E/E applications**
- **Extrusion applications**
- **Truck applications**
- **E-mobility applications**
- **Green products**

“Green” as underlying trend
Agenda

- Plastic / metal hybrid technology
- Composite technology
- CAE – integrative simulation for thermoplastic composites
- Application fields
Plastic / metal hybrid technology (PMH) – the principle

Denting or buckling of lightweight structures due to the thin wall

Strengthening the structure with small forces carried by plastic ribs

Sheet metal

\[\mathbf{F}_1 \]

\[\mathbf{F}_2 \]

\[\mathbf{F}_{\text{plastic}} \]

High-tech plastics keep metal "in shape"
Past and present
Plastic Metal Hybrid

Advantages against pure metal solutions
- 10-50% weight reduction
- 10-40% cost reduction
- High function integration with reduced process steps
- Higher accuracy and quality
- Higher load capacity

Additional benefits
- Suitable for e-coating
- easy recycling
- no change in assembly

Selection

More than 70 applications and 50 million manufactured parts
Current developments – cooperation across industries

Current technology – positive locking bond

New technology – adhesive bond

Expectations: weight neutral performance increase resp. ~ 30% weight reduction compared to standard PMH
LANXESS – product development for lightweight solutions

- Highly reinforced PA or PBT compounds
- Examples
 - Durethan® DP BKV 60EF (60% GF)
 - Pocan® T3150 XF (55% GF)
- High modulus (HM)
- High strength
- Low viscosity resins allow incorporation of high fiber amounts
Example – Audi A8 spare wheel well: HM grades with gas-injection-technology (GIT)

- Durethan® DP BKV 60 H2.0 EF (PA 6 + GF60)
- Heat stabilized and easy flow
- PMH with aluminum and GIT
- Shot weight: 12 kg
- Part weight: 9 kg

Advantages
- Cost and weight reduction compared to SMC* or metal design
- Enabling high function integration
- Glued into the BIW** contributing to the stiffness of the car
- Not feasible in pure metal design

Superior to pure metal designs

*Sheet Mold Compound **Body in White
Agenda

- Plastic / metal hybrid technology
- **Composite technology**
- CAE – integrative simulation for thermoplastic composites
- Application fields
Further development
Hybrid technology with composite sheets

Composite sheet
- Thermoplastic (PA) matrix materials reinforced with woven fabrics
- Glass, carbon or aramid fibers (also hybrid)
- Continuous fibers (fiber length = part length)

Advantages of hybrid composite parts
- Lightweight design
- High stiffness, strength and energy absorption
- No corrosion, simple recycling
- No investment for additional tools due to potential in-mold forming
- No chemical reaction in contrast to thermosets
- Easy processing

Example
Frontend Audi A8

Full-plastic composite parts as alternative to plastic-metal structures
Integration of composite sheet into the hybrid composite part through in-mold forming

- Heating up above melting point
- Shaping during the closing of injection molding tool
- Subsequent injection molding of rib pattern
- Demolding
Example – in-mold formed hybrid composites

Door impact beam (demonstrator)

Steering column bracket

Tepex® + Durethan®
BMBF-Project “SpriForm” in cooperation with

Tepex® + Durethan®
Project in cooperation with

Image of Door impact beam (demonstrator)
Image of Steering column bracket
Agenda

- Plastic / metal hybrid technology
- Composite technology
- **CAE – integrative simulation for thermoplastic composites**
- Application fields
Simulation is mandatory for the development of new applications

Hybrid composite parts
- New material (composite sheets)
- New process (one shot molding)
- Simulation required for
 - Mechanical component behavior
 - Processing (forming and molding)

LANXESS’ contribution
- New technology in virtual reality
- Shortened development times
- Reduced development costs
- Parts designed to the limits

“No application without simulation”
Challenges encountered in composite sheet simulation

Main mechanical characteristics
- Anisotropy
- Non-linearity
- Strain rate dependency
- Different tension / bending stiffness
- Failure / breakage
- Rotation of fiber directions / non-orthogonal fiber directions
- Temperature dependency
- Moisture dependency

* Tepex® dynalite 102-RG600(x)/45%
Forming / draping simulation of composite sheet – example: mouse bath tube

Forming simulation

Forming behavior

Orientation of composite sheet

0°

22.5°

45°

+ 55°

- 55°

Change of fabric angle

+ 55°

- 55°

Change of fabric angle
Mechanical behavior depending on fiber orientation

Durethan® BKV30 H2.0

Alternative universal valid isotrop values do not exist
Bonding strength of injection-molded part to composite sheet

Injection-molded plates on composite sheet

Tensile test → bonding strength

Bonding strength depends on

- Preheating of composite sheet
- Injection-molded parameters
- Flow length
- Material
- …

* LANXESS tool
Integrative simulation of hybrid composite parts

Material development
- Forming properties
- Mechanical properties

Virtual prototyping
- Forming simulation
- Fiber orientation
- Mapping

Interface properties
- Material model: composite sheet

Mechanical properties
- Material model: Durethan® Pocan®

Molding properties
- Molding simulation
- Fiber orientation
- Mapping

Material models:
- Durethan®
- Pocan®
Validation example – three point bending test of the upper beam of a frontend (1/2)

Part testing setup

Tepex® + Durethan®
Projekt in Cooperation with Faurecia

Two different LANXESS rib materials
- Durethan® BKV 30 H2.0
- Durethan® DP BKV 60 H2.0 EF

Three point bending test

<table>
<thead>
<tr>
<th>Force [N]</th>
<th>Displacement [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simulation Durethan® BKV30</td>
<td>Measurement Durethan® BKV30</td>
</tr>
<tr>
<td>Simulation Durethan® BKV60 EF</td>
<td>Measurement Durethan® BKV60 EF</td>
</tr>
</tbody>
</table>
Validation example – three point bending test of the upper beam of a frontend (2/2)

Failure behavior

Three point bending test

Displacement [mm]

Force [N]

- Simulation Durethan® BKV30
- Measurement Durethan® BKV30
- Simulation Durethan® BKV60 EF
- Measurement Durethan® BKV60 EF
Agenda

- Plastic / metal hybrid technology
- Composite technology
- CAE – integrative simulation for thermoplastic composites
- Application fields
High-tech plastics for lightweight applications

- Gas tank carrier
- Battery housing carrier
- Battery cell holder
- Steering rod
- Pedals / pedal brackets
- Brackets
- Roof frames
- Airbag housings
- Module carrier
- Cross car beams
- Frontends
- Roof frames
- Selection
LANXESS – for innovative lightweight solutions

- LANXESS offers extensive know-how in lightweight solutions
- Self-developed top-notch simulation tools
- Contributing to innovations with new technologies and high-performance materials
- Ready to jointly work on new applications
Safe harbour statement

This presentation contains certain forward-looking statements, including assumptions, opinions and views of the company or cited from third party sources. Various known and unknown risks, uncertainties and other factors could cause the actual results, financial position, development or performance of the company to differ materially from the estimations expressed or implied herein. The company does not guarantee that the assumptions underlying such forward looking statements are free from errors nor do they accept any responsibility for the future accuracy of the opinions expressed in this presentation or the actual occurrence of the forecasted developments. No representation or warranty (express or implied) is made as to, and no reliance should be placed on, any information, including projections, estimates, targets and opinions, contained herein, and no liability whatsoever is accepted as to any errors, omissions or misstatements contained herein, and, accordingly, none of the company or any of its parent or subsidiary undertakings or any of such person’s officers, directors or employees accepts any liability whatsoever arising directly or indirectly from the use of this document.